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EQUILIBRIA OF POINT CHARGES IN A LINE SEGMENT
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Abstract. We present several results on equilibria of point charges in a line
segment with charged end-points obtained in the framework of inverse problems
approach to linear ion traps. In particular, we give a solution of inverse electro-
static problem for four and five point charges.
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Introduction

Equilibria of point charges confined to a line segment with charged end-points
have been studied from various points of view (see, e.g. [1], [2], [3], [4]). In par-
ticular, the case of equal charges interacting by logarithmic potential have been
studied in great detail in a seminal paper of T.J. Stieltjes [1]. The results of
Stieltjes served as a paradigm for a vast topic which is nowadays called electro-
static interpretation of configurations of points on the line (see, e.g., [5]). A more
general setting for such developments has recently been suggested in [6] in the
case of Coulomb potential in the plane.

In last decades the interest towards these topics increased in connection with
the mathematical aspects of linear ion traps (Paul traps) [7], [5], [8], [9], [10]. In
this context it is natural to consider both the logarithmic potential and Coulomb
potential. Some results in the case of a few charges interacting by Coulomb
potential have been obtained in previous papers of the authors [11], [12], [13],
[14]. In particular, the inverse electrostatic problem for two and three point
charges in a linear ion trap has been solved in [11]. A spectacular evidence of
importance of such studies is the demonstration of five trapped ion based quantum
computer, which is programmable and reconstructible, by a research group from
the Joint Quantum Institute in the USA [15]. This suggests that a natural and
useful next step in the same direction is to study the cases where the number of
ions (point charges) is bigger than three. Along these lines, in the present paper
we present some results for four and five point charges in a line segment with
charged end-points.

We begin by discussing some aspects of this topic in the case of the logarithmic
potential. After that we present several results on equilibria of four point charges
in a linear ion trap.

1. Electrostatic interpretation of zeros of orthogonal polynomials

The equilibrium points of n free unit charges in the interval (−1, 1) ⊂ R
in the field generated by two fixed charges α+1

2 at 1 and β+1
2 at −1, where the

charges repel each other according to the law of logarithmic potential, are zeros
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of classical Jacobi polynomials
(
Pα,β
n (x)

)∞

n=0
, orthogonal on [−1, 1] with respect

to weight function (1− x)α(1 + x)β. This means that the energy of the field has
a local minimum at the zeros of the Jacobi polynomial of degree n. This deep
result belongs to Stieltjes (see [1]). Szegö proved that the energy has a unique
minimum, thus establishing the stability of the equilibrium [3].

Theorem 1. [3] Let α > −1 and β > −1. Then differential equation

(1− x2)y
′′
+ (β − α− (α+ β + 2)x)y

′
+ γy = 0, (1)

where γ is a parameter, has a polynomial solution not identically zero if and only
if γ has the form n(n+α+β+1), n = 0, 1, .... Moreover, if γ = n(n+α+β+1),

the polynomials cPα,β
n (x), where c is any constant, are solutions of this equation,

and there are no other polynomial solutions.
Consider more general problem: given m + 1 positive charges qj at pj , p0 <

... < pm, and all possible equilibrium locations xk of m free unit charges. This
problem is closely related to the question of characterizing the polynomial solu-
tions of the differential equation

A(x)y
′′
+ 2B(x)y

′
+ C(x)y = 0, (2)

where A(x) = (x − p0)...(x − pm), B(x) and C(x) are polynomials of degree m
and m− 1, and

B(x)

A(x)
=

m∑
j=0

qj
x− pj

.

The equation (2) is called a generalized Lamé equation in algebraic form.

Theorem 2. [3] For given A(x) and B(x), there exist exactly (n+m−1)!
n!(p−1)! poly-

nomials C(x), such that, for each of them, there exists a polynomial solution y(x)
of degree n with only real zeros of the Lamé equation (2).

The polynomial C(x) is called a Van Vleck polynomial and the corresponding
polynomial solution y(x) of (2) is called a Stieltjes polynomial.

The Jacobi polynomials from Theorem 1 can be given explicitly by the ex-
pression

P (α,β)
n (x) =

1

2

n∑
j=0

(n+ α)!

(n− j)!

(n+ β)!

j!
(x− 1)j(x+ 1)n−j .

From the Rodrigues formula

P (α,β)
n (x) =

1

2nn!
(x− 1)−α(x+ 1)−β

(
d

dx

)n

[(x− 1)n+α(x+ 1)n+β]

it follows, that P
(α,β)
n (x) are analytic functions of the parameters α, β ∈ C and

that degP
(α,β)
n (x) ≤ n.

We now describe a more detailed electrostatic model of n unit point charges
on the line.

Let two positive fixed charges of mass β+1
2 and α+1

2 at −1 and +1, respectively
and allow n positive unit charges X = {x1, ..., xm} to move freely in (−1, 1). The
total energy E(X) of this system if the interaction obeys the logarhitmic potential
law equal to

E(X) = Eint + Eext,
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where

Eint = −
∑

1≤k≤j≤n

ln |xk − xj |,

and

Eext =

n∑
k=1

φ(xk)

with the external field φ(x) created by the fixed charges:

φ(x) = −β + 1

2
ln |x+ 1| − α+ 1

2
ln |x− 1|. (3)

Theorem 1 means that there exists a unique configuration X∗ = {x∗1, ..., x∗m}
providing the global minimum of E(X) in [−1, 1]n, corresponding to the unique
equilibrium position for given free charges, the points x∗j are the zeros of the

polynomial P
(α,β)
n .

The critical points of the energy functional E(X) as the function of xj is the
solutions of the equation

∂

∂xk
E(X) = 0.

Suppose X∗ is critical configuration, then

∂

∂xk
Eint(X)|X=X∗ + φ

′
(xk) = 0 (4)

Suppose y(x) = (x − x∗1)(x − x∗2)...(x − x∗n) is monic polynomial with zeros at
x∗k’s, then

∂

∂xk
Eint(X)|X=X∗ = −

∑
1≤j≤n,j ̸=k

1

x∗k − x∗j
= −1

2

y
′′
(x∗k)

y′(x∗k)

and

φ
′
(x) = − β + 1

2(x+ 1)
− α+ 1

2(x− 1)
.

From (4) we obtain

y
′′
(x) +

(
β + 1

x+ 1
+

α+ 1

x− 1

)
y
′
= 0 (5)

for all x ∈ X∗.

From the equation (5) we obtain that the polynomial

(1− x2)y
′′
(x) + (x(α+ β + 2) + (α− β))y

′

of degree n is equal to zero at the zeros of polynomial y(x) and therefore equal
to const× y(x). Denote by γ this constant, we obtain a second order differential
equation (1) (see [3], sect. 4.2 and 6.7).

The Lamé equation is a Fuchsian type differential equation on the extended
complex plane with four regular singular points −1, 0, s and ∞, with exponents
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(0, 1/2), (0, 1/2), (0, 1/2) and (l/2,−(l+1)/2). The canonical form of the second
order differential equation of this kind is

y
′′
(x) +

1

2

(
1

x
+

1

x− 1
+

1

x− s

)
y
′
(x)− l(l + 1)x+ 4q

4x(x− 1)(x− s)
y(x) = 0. (6)

Equation (6) is a particular case of the second order Fuchsian differential
equation with four singular points 0, 1, s,∞ and with exponents (0, 1−γ), (0, 1−
δ), (0, 1− ϵ), (α, β) at singular points:

y
′′
(z) +

(
γ

z
+

δ

z − 1
+

ϵ

z − s

)
y
′
(z)− αβz − q

z(z − 1)(z − s)
y(z) = 0, (7)

where the constants α, β, γ, δ, ϵ satisfy the Fuchs relation

α+ β + 1 = γ + δ + ϵ.

The equation (7) is known as the Heun equation [17] and relation between
Lamé and Heun equations is similar the relation hypergeometric (Euler-Gauss)
and Riemann equations: both are the second order differential equations with
three singular points and by a conformal transformation singular points s1, s2, s3
pass to 0, 1,∞. At the same time, the exponents are changed. The parameter q
in equation (7) is called accessory parameter and arises as additional parameter
from monodromy group of Fuchsian equation. The Schwarz-Cristoffel parame-
ter problem [18] for four points, investigation of spherical quadrilaterals [19] are
closely related to Heun equation and its generalizations and have many applica-
tions for study different physical problems (see [20]).

2. Mathematics of linear ion traps

It is known that ion traps are good candidates to produce quantum computa-
tional processes because they are one of the proposals that fulfill all the criteria.
The ion traps that run with static and dynamic electric fields are usually called
Paul or radio frequency traps.

Ion traps can produce logical operations through the use of quantum gates,
as was firstly proposed by Cirac and Zoller [8] (see also [9], [10]). Equilibrium
positions of ions in a linear trap were investigated in [16].

Let us consider the following model. Suppose a chain of N ions in a trap is
given. The ions are assumed to be strongly bound in the y and z directions but
weakly bound in an harmonic potential in the x direction. The position of the
m-th ion, where the ions are numbered from left to right, will be denoted xm(t).
The motion of each ion will be influenced by an overall harmonic potential due
to the trap electrodes and by the Coulomb force exerted by all of the other ions.
We will assume that the binding potential in the y and z directions is sufficiently
strong that motion along these axes can be neglected. Hence the potential energy
of the ion chain is given by the following expression:

V =

N∑
j=1

1

2
Mν2xm(t)2 +

N∑
i,j=1,i ̸=j

Z2e2

8πϵ0

1

|xi(t)− xj(t)|
, (8)
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where M is the mass of each ion, e is the electron charge, Z is the degree of ion-
ization of the ions, ϵ0 is the permitivity of free space, and ν is the trap frequency,
which characterizes the strength of the trapping potential in the axial direction.

Assume that the ions are sufficiently cold so that the position of the m-th ion
can be approximated by the formula

xm(t) ≈ x(0)m + qm(t) (9)

where x
(0)
m is the equilibrium position of the ion, and qm(t) is a small displacement.

The equilibrium positions will be determined by the following equation:[
∂V

∂xm

]
xm=x

(0)
m

= 0 (10)

and the dimensionless equilibrium position um = x
(0)
m
l , then (10) may be rewritten

as the following system of N algebraic equations for the values of um :

um −
N−1∑
m=1

1

(xm − xn)2
+

N∑
n=m+1

1

(xm − xn)2
= 0, m = 1, ..., N. (11)

The above described model is called the direct problem of electrostatics (see
[6], [12]): given a compact conductor X and collection of n positive numbers
Q = (qi), find all equilibrium configurations of charges qi in X and determine
their types as critical points of Coulomb potential EQ|Xn.

3. Inverse problem of electrostatics for point charges in line seg-
ment

Let us consider now an inverse problem called the inverse problem of elec-
trostatics (see [6], [13]): given a finite configuration P = (p1, ..., pn) of points
in compact conductor X, find out if there exists a collection of non-zero real
numbers Q = (q1, ..., qn) such that configuration P is a critical point of Coulomb
potential EQ restricted to Xn.

Let N be the number of point charges considered. Then the resultant force
on qi in position xi is given by

Fm =
qmt1
x2m

+
m−1∑
j=1

qmqj
(xm − xj)2

−
N∑

j=m+1

qmqj
(xj − xm)2

− qmt2
(L− xm)2

, m = 1, ..., N.

The relations
F1 = 0, F2 = 0, ..., FN = 0,

give a system of non-homogeneous linear equations

MQ = G, (12)

for unknowns q1, ..., qN , where

G =

(
t2

(L− x1)2
− t1

x21
,

t2
(L− x2)2

− t1
x22

, ...,
t2

(L− xN )2
− t1

x2N

)T

,
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M = (mij)
N
i,j=1 is an antisymmetric matrix and mij = (−1)τij (xj − xi)

−2, i ̸= j,
τij = 0, if i > j; and τij = 1, if i < j.

For N = 4 we have:

F1 =
t1q1
x21

− q1q2
(x2 − x1)2

− q1q3
(x3 − x1)2

− q1q4
(x4 − x1)2

− q1t2
(L− x1)2

,

F2 =
t1q2
x22

+
q1q2

(x2 − x1)2
− q2q3

(x3 − x2)2
− q2q4

(x4 − x2)2
− q2t2

(L− x2)2
,

F3 =
t1q3
x23

+
q1q3

(x3 − x1)2
+

q2q3
(x3 − x2)2

− q3q4
(x4 − x3)2

− q3t2
(L− x3)2

,

F4 =
t1q4
x24

+
q1q4

(x4 − x1)2
+

q2q4
(x4 − x2)2

+
q3q4

(x4 − x3)2
− q4t2

(L− x4)2
.

M4 =


0 − 1

(x2−x1)2
− 1

(x3−x1)2
− 1

(x4−x1)2
1

(x2−x1)2
0 − 1

(x3−x2)2
− 1

(x4−x2)2
1

(x3−x1)2
1

(x3−x2)2
0 − 1

(x4−x3)2
1

(x4−x1)2
1

(x4−x2)2
1

(x4−x3)2
0

 ,

G =

(
t2

(L− x1)2
− t1

x21
,

t2
(L− x2)2

− t1
x22

,
t2

(L− x3)2
− t1

x23
,

t2
(L− x4)2

− t1
x24

)T

,

Q = (q1, q2, q3, q4)
T .

Denote by

P =
1

(x4 − x3)2(x4 − x2)2(x4 − x1)2(x3 − x2)2(x3 − x1)2(x2 − x1)2
.

Then
DetM4

= 2P
[
(x4 − x2)

2(x3 − x1)
2 − (x4 − x3)

2(x2 − x1)
2 − (x4 − x1)

2(x3 − x2)
2
]

+
1

(x4 − x3)4(x2 − x1)4
+

1

(x4 − x2)4(x3 − x1)4
+

1

(x4 − x1)4(x3 − x2)4
.

Here we used the known formula for the antisymmetric matrix (PfM4)
2 =

DetM4, where PfM4 is the Pfaffian of the matrix M4 and

PfM4 =
1

(x2 − x1)2
1

(x4 − x3)2
− 1

(x3 − x1)2
1

(x4 − x2)2
+

1

(x3 − x2)2
1

(x4 − x2)2
.

Proposition 1. DetM4 ̸= 0. P ̸= 0, since xi ̸= xj , i ̸= j and i, j = 1, .., 4.
Consider the following expression

∆ = P−2DetM4

= 2(x4 − x3)
2(x4 − x2)

4(x4 − x1)
2(x3 − x2)

2(x3 − x1)
4(x2 − x1)

2

−2(x4 − x3)
4(x4 − x2)

2(x4 − x1)
2(x3 − x2)

2(x3 − x1)
2(x2 − x1)

4

−2(x4 − x3)
2(x4 − x2)

2(x4 − x1)
4(x3 − x2)

4(x3 − x1)
2(x2 − x1)

2

+(x4 − x2)
4(x4 − x1)

4(x3 − x2)
4(x3 − x1)

4
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+(x4 − x3)
4(x4 − x1)

4(x3 − x2)
4(x2 − x1)

4

+(x4 − x3)
4(x4 − x2)

4(x3 − x1)
4(x2 − x1)

4.

Denote by xij = (xi − xj)
2, j < i, xij > 0. Then

∆ = 2x43x
2
42x41x32x

2
31x21 − 2x243x42x41x32x31x

2
21 − 2x43x42x

2
41x

2
32x31x21+

+x242x
2
41x

2
32x

2
31 + x243x

2
41x

2
32x

2
21 + x243x

2
42x

2
31x

2
21.

Using the obvious inequalities x21 < x31 < x41, we obtain ∆ > 0.

Denote by M−1
4 = 1

DetM4


0 m12 m13 m14

−m12 0 m23 m24

−m13 −m23 0 m34

−m14 −m24 −m34 0

 , where

m12 =
1

(x2 − x1)2(x4 − x3)2(x4 − x2)2
− 1

(x3 − x2)2(x4 − x3)2(x4 − x1)2

− 1

(x4 − x3)4(x2 − x1)2
,

m13 =
1

(x3 − x1)2(x4 − x2)4
− 1

(x4 − x2)2(x3 − x2)2(x4 − x1)2

− 1

(x4 − x3)2(x4 − x2)2(x2 − x1)2
,

m14 =
1

(x2 − x1)2(x3 − x2)2(x4 − x3)2
+

1

(x3 − x1)2(x4 − x2)2(x3 − x2)2

− 1

(x3 − x2)4(x4 − x1)2
,

m23 =
1

(x3 − x1)2(x4 − x2)2(x4 − x1)2
+

1

(x4 − x1)2(x2 − x1)2(x4 − x3)2

− 1

(x3 − x2)4(x4 − x1)2
,

m24 =
1

(x3 − x1)4(x4 − x2)2
+

1

(x4 − x1)2(x3 − x2)2(x3 − x1)2

− 1

(x3 − x1)2(x4 − x3)2(x2 − x1)2
,

m34 =
1

(x2 − x1)4(x3 − x1)2
− 1

(x4 − x1)2(x2 − x1)2(x3 − x2)2

− 1

(x4 − x3)2(x2 − x1)4
.

One may calculate M−1
4 using the so called Cayley-Hamilton method:

M−1
4 =

1

DetM4

(
1

6
((trM4)

3 − 3trM4 trM
2
4 + 2trM3

4 )I

)

− 1

2DetM4
M4((trM4)

2 − trM2
4 +M4 trM4 −M2

4 ),
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where I is 4× 4-identity matrix.

Proposition 2. For N = 4, the unique balancing charges are as follows

q1 = n12

(
t2

(L− x2)2
− t1

x22

)
+ n13

(
t2

(L− x3)2
− t1

x23

)
+ n14

(
t2

(L− x4)2
− t1

x24

)
,

q2 = −n12

(
t2

(L− x1)2
− t1

x21

)
+n23

(
t2

(L− x3)2
− t1

x23

)
+n24

(
t2

(L− x4)2
− t1

x24

)
,

q3 = −n13

(
t2

(L− x1)2
− t1

x21

)
−n23

(
t2

(L− x2)2
− t1

x22

)
+n24

(
t2

(L− x4)2
− t1

x24

)
,

q4 = −n14

(
t2

(L− x1)2
− t1

x21

)
−n24

(
t2

(L− x2)2
− t1

x22

)
−n34

(
t2

(L− x3)2
− t1

x23

)
,

where nij =
mij

DetM , i = 1, 2, 3 and j = 2, 3, 4.

Analogous results for N = 5 can be obtained using the following system of
equations for balancing charges.

F1 =
t1q1
x21

− q1q2
(x2 − x1)2

− q1q3
(x3 − x1)2

− q1q4
(x4 − x1)2

− q1q5
(x5 − x1)2

− q1t2
(L− x1)2

,

F2 =
t1q2
x22

+
q1q2

(x2 − x1)2
− q2q3

(x3 − x2)2
− q2q4

(x4 − x2)2
− q2q5

(x5 − x2)2
− q2t2

(L− x2)2
,

F3 =
t1q3
x23

+
q1q3

(x3 − x1)2
+

q2q3
(x3 − x2)2

− q3q4
(x4 − x3)2

− q3q5
(x5 − x3)2

− q3t2
(L− x3)2

,

F4 =
t1q4
x24

+
q1q4

(x4 − x1)2
+

q2q4
(x4 − x2)2

+
q3q4

(x4 − x3)2
− q4q5

(x5 − x4)2
− q4t2

(L− x4)2
,

F5 =
t1q5
x25

+
q1q5

(x5 − x1)2
+

q2q5
(x5 − x2)2

+
q3q5

(x5 − x3)2
+

q4q5
(x5 − x4)2

− q5t2
(L− x5)2

.

From this

M5 =


0 − 1

(x2−x1)2
− 1

(x3−x1)2
− 1

(x4−x1)2
− 1

(x5−x1)2
1

(x2−x1)2
0 − 1

(x3−x2)2
− 1

(x4−x2)2
− 1

(x5−x2)2
1

(x3−x1)2
1

(x3−x2)2
0 − 1

(x4−x3)2
− 1

(x4−x3)2
1

(x4−x1)2
1

(x4−x2)2
1

(x4−x3)2
0 − 1

(x5−x4)2
1

(x5−x1)2
1

(x5−x2)2
1

(x5−x3)2
1

(x5−x4)2
0

 .

DetM5 = 0, sinceM5 is an antisymmetric matrix. One gets rankM5 = 4, because
M5 contains M4 as minor and detM4 ̸= 0. Let

0 − 1
(x2−x1)2

− 1
(x3−x1)2

− 1
(x4−x1)2

− 1
(x5−x1)2

t2
(L−x1)2

− t1
x2
1

1
(x2−x1)2

0 − 1
(x3−x2)2

− 1
(x4−x2)2

− 1
(x5−x2)2

t2
(L−x2)2

− t1
x2
2

1
(x3−x1)2

1
(x3−x2)2

0 − 1
(x4−x3)2

− 1
(x4−x3)2

t2
(L−x3)2

− t1
x2
3

1
(x4−x1)2

1
(x4−x2)2

1
(x4−x3)2

0 − 1
(x5−x4)2

t2
(L−x4)2

− t1
x2
4

1
(x5−x1)2

1
(x5−x2)2

1
(x5−x3)2

1
(x5−x4)2

0 t2
(L−x5)2

− t1
x2
5

 .
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The system of equations (12) for N = 5 is solvable if rankM̃5 = 4, where

M̃5 =



0 − 1
(x2−x1)2

− 1
(x3−x1)2

− 1
(x4−x1)2

t2
(L−x1)2

− t1
x2
1

1
(x2−x1)2

0 − 1
(x3−x2)2

− 1
(x4−x2)2

t2
(L−x2)2

− t1
x2
2

1
(x3−x1)2

1
(x3−x2)2

0 − 1
(x4−x3)2

t2
(L−x3)2

− t1
x2
3

1
(x4−x1)2

1
(x4−x2)2

1
(x4−x3)2

0 t2
(L−x4)2

− t1
x2
4

1
(x5−x1)2

1
(x5−x2)2

1
(x5−x3)2

1
(x5−x4)2

t2
(L−x5)2

− t1
x2
5

 .

Lemma 1. DetM̃5 =
∑5

i=1M
i5
5 , where

M i5
5 =

(
t2

(L− xi)2
− t1

x2i

)
M̃ i5

5 , i = 1, 2, 3, 4

and

M55
5 =

(
t2

(L− x5)2
− t1

x25

)
DetM4.

Here

M̃15
5 =

1

(x5 − x2)2

(
− 1

(x3 − x2)2(x4 − x2)2(x4 − x1)2

− 1

(x4 − x2)2(x4 − x3)2(x3 − x1)2
− 1

(x4 − x2)2(x4 − x3)2(x2 − x1)2

)
+

1

(x5 − x3)2

(
− 1

(x4 − x2)2(x3 − x1)2(x4 − x2)2

+
1

(x4 − x2)2(x3 − x2)2(x4 − x1)2
− 1

(x4 − x2)4(x2 − x1)2

)
+

1

(x5 − x4)2

(
− 1

(x2 − x1)2(x3 − x2)2(x4 − x3)2

+
1

(x3 − x2)2(x3 − x1)2(x4 − x2)2
− 1

(x3 − x2)4(x4 − x1)2

)
;

M̃25
5 =

1

(x2 − x1)2

(
− 1

(x3 − x1)2(x4 − x3)2(x5 − x5)2

− 1

(x4 − x3)2(x4 − x1)2(x5 − x3)2
+

1

(x4 − x3)4(x5 − x1)2

)
+

1

(x3 − x1)2

(
− 1

(x3 − x1)2(x4 − x2)2(x5 − x4)2

− 1

(x4 − x3)2(x5 − x2)2(x4 − x1)2
+

1

(x4 − x3)2(x4 − x2)2(x5 − x1)2

− 1

(x3 − x2)2(x4 − x1)2(x5 − x4)2

)
+

1

(x4 − x1)2

(
− 1

(x3 − x1)2(x4 − x2)2(x5 − x3)2

+
1

(x3 − x2)2(x4 − x3)2(x5 − x1)2
− 1

(x4 − x3)2(x5 − x2)2(x3 − x1)2
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− 1

(x3 − x2)2(x4 − x1)2(x5 − x3)2

)
;

1

(x4 − x2)2(x4 − x1)2(x5 − x3)2
− 1

(x5 − x1)2(x4 − x3)2(x4 − x2)2

+
1

(x4 − x1)2(x3 − x2)2(x5 − x4)2

)

− 1

(x3 − x1)2

(
− 1

(x2 − x1)2(x4 − x2)2(x5 − x4)2

+
1

(x4 − x1)2(x5 − x2)2(x4 − x2)2
− 1

(x4 − x2)4(x5 − x1)2

)

+
1

(x4 − x1)2

(
− 1

(x2 − x1)2(x4 − x2)2(x5 − x3)2

− 1

(x3 − x2)2(x4 − x1)2(x4 − x2)2
+

1

(x4 − x2)2(x5 − x1)2(x3 − x2)2

− 1

(x2 − x1)2(x4 − x2)2(x4 − x3)2

)
;

M̃45
5 =

1

(x2 − x1)2

(
− 1

(x3 − x2)2(x4 − x3)2(x5 − x1)2

+
1

(x3 − x1)2(x4 − x2)2(x5 − x3)2
+

1

(x5 − x3)2(x4 − x3)2(x2 − x1)2

+
1

(x3 − x1)2(x3 − x2)2(x5 − x1)2

)

− 1

(x3 − x1)2

(
− 1

(x2 − x1)2(x3 − x2)2(x5 − x1)2

+
1

(x4 − x2)2(x5 − x2)2(x3 − x1)2
− 1

(x4 − x2)2(x3 − x2)2(x5 − x1)2

+
1

(x4 − x3)2(x2 − x1)2(x5 − x2)2

)

+
1

(x4 − x1)2

(
− 1

(x2 − x1)2(x3 − x2)2(x5 − x3)2

− 1

(x3 − x1)2(x5 − x2)2(x3 − x2)2
+

1

(x5 − x1)2(x3 − x2)4

)
;

Proposition 3. If (x∗1, x
∗
2, x

∗
3, x

∗
4, x

∗
5) is the root of polynomial equation DetM5 =

0, then for given t1, t2, L and fixed q1 > 0, there exist balancing charges q2, q3, q4, q5.

Remark 1. DetM5 = 0 is a polynomial equation of degree 14 with 5 vari-
ables. The computer experiment shows that, in the general case, for fixed real
numbers 0 < x1, x2, x3, x4 < L there always exists a real solution x5 of this
equation which satisfies the condition 0 < x5 < L.
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Remark 2. The solution of direct problem of electrostatic is reduced to the
analysis of the system of equations (11) for N = 5 :

u1 +
1

(u1 − u2)2
+

1

(u1 − u3)2
+

1

(u1 − u4)2
+

1

(u1 − u5)2
= 0,

u2 −
1

(u2 − u1)2
+

1

(u2 − u3)2
+

1

(u2 − u4)2
+

1

(u2 − u5)2
= 0,

u3 −
1

(u3 − u1)2
− 1

(u3 − u2)2
+

1

(u3 − u4)2
+

1

(u3 − u5)2
= 0,

u4 −
1

(u4 − u1)2
− 1

(u4 − u2)2
− 1

(u4 − u3)2
+

1

(u4 − u5)2
= 0,

u5 −
1

(u5 − u1)2
− 1

(u5 − u2)2
− 1

(u5 − u3)2
− 1

(u5 − u4)2
= 0.

It is difficult to solve this system without the assumption that the roots are
located symmetrically with respect to 0. In [16] it the numerical solution of this
system up to N = 10 is given. For N = 5, i.e. solution of the above system
is (−1.7429,−0.8221, 0, 0.8221, 1.7429). On the other hand, using Proposition 3,
solutions of the inverse problem may be obtained by computer algebra system
for PC.
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